4 N

. IEE;g(isri‘c?aelrisr::gieanncdes S FO rk: S u p po rtl n g Com p I ex M u Itl - Innovate
Research Council UK
Digital Security Process Applications in a Single
by Design MANCH%SZEER
C Address Space OS y
John Alistair Kressel, Hugo Lefeuvre, Pierre Olivier
The University of Manchester
4 \)
Single Address Space OSes (SASOS) Problem: Lack of fork () Support
& N _J
Virtual | SASOSes are incompatible with forking processes which
Address Single creates a copy of their address space.
Spaces Virtual
(eg. Physical ~Address Most existing solutions treat OS as process and copy
Processes) = Memory Space entire OS [2,3]
Page " | ’
Table]
1 | Application \\:\Q\e
Parent Single forks Child Single \“\) cO
— Address Space Address Space 66(6 \
Page “~._— [[Singie 0S - (%) eo"
Table| ——> _ - Page fork() caII‘ }opy VM an
2 _ Table Hypervisor S
“F;:SZ | X Loses single address space performance advantages by
3 — reintroducing multiple address spaces
_— I X Cloning entire OS is costlier and more resource intensive
L Previous attempt at true single address space fork()
P C suffers from coarse granularity of memory sharing and
ros ons no isolation between processes [4]
v" No overhead from X No support for multiple
switching page tables processes through How can we transparently and securely support
v Fast IPC POSIX fork () POSIX fork () ina SASOS without losing the
single address space?
N\ N Y
~ R

SFork: Emulate Processes with Threads in a Single Address Space OS

\ J
1 _ r N
2 W How SFork Works:
Mapped Application Mapped Application 1 Application transparently calls fork ()
el il « New process mapped to another part of the

address space

3 * 4 -
f . Thrdad 2 . 2 Cop;y On tVVrlte S i
: - Parent process memory copied when modifie
Challe_n_ge§ & S_°|Ut|°n3 3 |dentify pointers to parent process
* Providing isolation between processes - Copied memory will contain pointers to parent

* Ensuring pointers to parent memory are identified
and updated in the child

We will solve these problems using CHERI [1]

* In pure capability mode (purecap) all pointers are
bounded - processes are restricted to their portion of | Current Progress (April 2024)

memory
4 Update pointers to point to child memory

\ J

the address space « Unikraft, a popular unikernel, ported to purecap on
* Pointers to parent memory can be identified because Morello
capabilities are tagged ') = Purecap Unikraft running bare-metal and under
rAd ¢ ‘ bhyve on CHERIBSD host OS
$ vantages | | + Paravirtualised I/O (VirtlO) support for purecap
’ Lower resource cqnsumptlo_n. t_haq multiple VMs Unikraft running under bhyve
Faster IPCs by using capabilities in the same address | ., Applications such as SQLite, Redis and a http
. space | server running on purecap Unikraft
Faster context switches (same page table) + Basic fork() building blocks implemented with
Q\/ |solation between processes) work ongoing)
References
1] Woodruff, Jonathan, et al. "The CHERI capability model: Revisiting RISC in an age of risk.” ISCA 2014
2] Lupu, Costin, et al. "Nephele: Extending Virtualization Environments for Cloning Unikernel-Based VMs.” EuroSys 2023
3] Zhang, Yiming, et al. "KylinX: A Dynamic Library Operating System for Simplified and Efficient Cloud Virtualization.” USENIX ATC 2018
4] Wilkinson, Tim, et al. Compiling for a 64-bit Single Address Space Architecture Technical Report 1993

