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Pros
ü No overhead from 

switching page tables
ü Fast IPC

Cons
✕ No support for multiple 

processes through 
POSIX fork()

SASOSes are incompatible with forking processes which 
creates a copy of their address space.

Most existing solutions treat OS as process and copy 
entire OS [2,3]

✕ Loses single address space performance advantages by 
reintroducing multiple address spaces

✕ Cloning entire OS is costlier and more resource intensive

How SFork Works:
1. Application transparently calls fork()

• New process mapped to another part of the 
address space

2. Copy On Write
• Parent process memory copied when modified

3. Identify pointers to parent process
• Copied memory will contain pointers to parent 

memory
4. Update pointers to point to child memory

Advantages
ü Lower resource consumption than multiple VMs
ü Faster IPCs by using capabilities in the same address 

space
ü Faster context switches (same page table)
ü Isolation between processes
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Multiple 

address 

spaces!

Previous attempt at true single address space fork() 
suffers from coarse granularity of memory sharing and 

no isolation between processes [4]

How can we transparently and securely support 
POSIX fork() in a SASOS without losing the 

single address space?

Challenges & Solutions
• Providing isolation between processes
• Ensuring pointers to parent memory are identified 

and updated in the child
We will solve these problems using CHERI [1]
• In pure capability mode (purecap) all pointers are 

bounded -  processes are restricted to their portion of 
the address space

• Pointers to parent memory can be identified because 
capabilities are tagged

Current Progress (April 2024)
• Unikraft, a popular unikernel, ported to purecap on 

Morello
• Purecap Unikraft running bare-metal and under 

bhyve on CHERIBSD host OS
• Paravirtualised I/O (VirtIO) support for purecap 

Unikraft running under bhyve
• Applications such as SQLite, Redis and a http 

server running on purecap Unikraft
• Basic fork() building blocks implemented with 

work ongoing

Single Address Space OSes (SASOS) Problem: Lack of fork()Support

SFork: Emulate Processes with Threads in a Single Address Space OS

SFork: Supporting Complex Multi-
Process Applications in a Single 

Address Space OS


