
John Alistair Kressel, Hugo Lefeuvre, Pierre Olivier
The University of Manchester

Pros
ü No overhead from

switching page tables
ü Fast IPC

Cons
✕ No support for multiple

processes through
POSIX fork()

SASOSes are incompatible with forking processes which
creates a copy of their address space.

Most existing solutions treat OS as process and copy
entire OS [2,3]

✕ Loses single address space performance advantages by
reintroducing multiple address spaces

✕ Cloning entire OS is costlier and more resource intensive

How SFork Works:
1. Application transparently calls fork()

• New process mapped to another part of the
address space

2. Copy On Write
• Parent process memory copied when modified

3. Identify pointers to parent process
• Copied memory will contain pointers to parent

memory
4. Update pointers to point to child memory

Advantages
ü Lower resource consumption than multiple VMs
ü Faster IPCs by using capabilities in the same address

space
ü Faster context switches (same page table)
ü Isolation between processes

References
[1] Woodruff, Jonathan, et al. "The CHERI capability model: Revisiting RISC in an age of risk.” ISCA 2014
[2] Lupu, Costin, et al. "Nephele: Extending Virtualization Environments for Cloning Unikernel-Based VMs.” EuroSys 2023
[3] Zhang, Yiming, et al. "KylinX: A Dynamic Library Operating System for Simplified and Efficient Cloud Virtualization.” USENIX ATC 2018
[4] Wilkinson, Tim, et al. Compiling for a 64-bit Single Address Space Architecture Technical Report 1993

Multiple

address

spaces!

Previous attempt at true single address space fork()
suffers from coarse granularity of memory sharing and

no isolation between processes [4]

How can we transparently and securely support
POSIX fork() in a SASOS without losing the

single address space?

Challenges & Solutions
• Providing isolation between processes
• Ensuring pointers to parent memory are identified

and updated in the child
We will solve these problems using CHERI [1]
• In pure capability mode (purecap) all pointers are

bounded - processes are restricted to their portion of
the address space

• Pointers to parent memory can be identified because
capabilities are tagged

Current Progress (April 2024)
• Unikraft, a popular unikernel, ported to purecap on

Morello
• Purecap Unikraft running bare-metal and under

bhyve on CHERIBSD host OS
• Paravirtualised I/O (VirtIO) support for purecap

Unikraft running under bhyve
• Applications such as SQLite, Redis and a http

server running on purecap Unikraft
• Basic fork() building blocks implemented with

work ongoing

Single Address Space OSes (SASOS) Problem: Lack of fork()Support

SFork: Emulate Processes with Threads in a Single Address Space OS

SFork: Supporting Complex Multi-
Process Applications in a Single

Address Space OS

