FlexCap: Software Compartmentalisation Trade-Offs with

Hardware Capab

ilities

John Alistair Kressel, Hugo Lefeuvre, Pierre Olivier — The University of Manchester

MANCHESTER
1324

The University of Manchester

Innovate
UK

Motivation & Backg

CHERI brings hardware capabilities to RISC ISAs
 CHERI hardware capabilities add bounds and permissions information to pointers
* CHERI can be used in hybrid execution mode — both pointers and capabilities used
 Hybrid mode enables existing software to be used without major porting

* How easy is it to apply to compartmentalisation (the isolation of code and data) in hybrid mode to a single address

space scenario such as applications?

Problem Statement:
Exploration of intra-address space, hybrid mode compartmentalisation is lacking - we

compartment models and their performance and engineering costs as well as security and scalability

Engineering and Digital Security
Physical Sciences .
Research Council by DeS|gn

round

explore the possible

System Design

* Prototype implemented using compartmentalisation-aware unikernel — FlexOS
* All components in single address space
* Unikernels have no memory isolation for performance — FlexOS uses

compartmentalisation to restore security

 Compartments defined statically by developer
* Compartments defined by PCC and DDC — global architectural capabilities

* Function call ‘gates’ initiate compartment switches (Caller)

* Privileged switcher switches compartment capabilities and stacks

* Trampoline is entry point to callee and performs capability return to caller

3 - Call=——————p
Trampoline Callee
<4 -Return

Challenges — Data Sharing

Approach 1: Manual Capability Propagation Approach 2: Overlapping Shared Memory
* Functions ported to use capabilities Region of shared memory between pairs of compartments
e Effortlow in small compartments e Compartment data bounds (DDC) extended to overlap shared memory
* Tightly bounded data accesses Data annotated by developer to relocate to shared data
* Trust model: sandbox Coarse-grained data sharing
* Trust model: mutual distrust
Comp_0 DDC Comp_1 DDC

--------- +Comp 1 DDC: -

Shared s = l
Data capability arg
Comp_0 -

Dereference:

Comp O 1Shared Data Comp 1

access shared data

Virtual address space —

Virtual address space ——m——r—m—m—m—m—m—m7mm—m—meoo-

Evaluation On Morello Hardware

Libsodium benchmark used to evaluate Approach 1 (5 functions), SQLite benchmark used to evaluate Approach 2 (filesystem isolated) — All evaluation on bare metal

FlexOS on Morello Approach 1: Manual Capability Propagation

* FlexOS Unikernel ported to Morello e Performance overhead:

* Runsin hybrid mode e 0.1%-12.2% relative to
e 2200 LoC needed for port

 Execution bare metal on hardware + Engineering cost:

* Majority of existing work evaluated on * max 2 hours and 73 LoC changed (>50%)
FPGASs or softcores

w

o Ul P, U1 N U1 W o

N

JorPo@M&HO;
= o332°2=

=

o

Avg. execution time (s)

Baseline (ho bin2hex chacha20_ store32 le

compartments) & encrypt_
hex2bin bytes store64 be

2.921s 2 819s 2.82s

2.603s 2.607s - o oo 297 8%
200 Morello 2% | X86
150 119.9% 119.9%
96.3%
: 100

Approach 2: Overlapping Shared Memory
* Performance overhead:
* 119.9% relative to uncompartmentalised execution on
Morello

uncompartmentalised execution on Morello Comparable to MPK & outperforms EPT

compartmentalisation in FlexOS on Intel x86-64
Outperforms Linux with SQLite benchmark and similar
isolation (filesystem)
* Engineering cost:

* max 2 days and <300 LoC changed in filesystem (~5%)

Baseline (%)

Slowdown Compared To

FlexOS FlexOS Linux FlexOS FlexOS Linux
(CHERI2) (CHERI3) (PT2) (MPK3) (EPT?2) (PT2)

Conclusions & Future Work

 Performance overhead of hybrid mode compartmentalisation in a single address space is comparable to other intra-address space mechanisms
* Engineering burden of mixing pointers and capabilities requires trade-offs to design to reduce it

* Pure capability compartments within a Unikernel environment will be explored in the future

John Alistair Kressel, Hugo Lefeuvre, and Pierre Olivier. 2023. Software Compartmentalization Trade-Offs with Hardware Capabilities. In Proceedings of the 12th Workshop on Programming

Languages and Operating Systems (PLOS ‘23)

