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Motivation & Backg

CHERI brings hardware capabilities to RISC ISAs
 CHERI hardware capabilities add bounds and permissions information to pointers
* CHERI can be used in hybrid execution mode — both pointers and capabilities used
 Hybrid mode enables existing software to be used without major porting

* How easy is it to apply to compartmentalisation (the isolation of code and data) in hybrid mode to a single address

space scenario such as applications?

Problem Statement:
Exploration of intra-address space, hybrid mode compartmentalisation is lacking - we

compartment models and their performance and engineering costs as well as security and scalability
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System Design

* Prototype implemented using compartmentalisation-aware unikernel — FlexOS
* All components in single address space
* Unikernels have no memory isolation for performance — FlexOS uses

compartmentalisation to restore security

 Compartments defined statically by developer
* Compartments defined by PCC and DDC — global architectural capabilities

* Function call ‘gates’ initiate compartment switches (Caller)

* Privileged switcher switches compartment capabilities and stacks

* Trampoline is entry point to callee and performs capability return to caller
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Challenges — Data Sharing

Approach 1: Manual Capability Propagation Approach 2: Overlapping Shared Memory
* Functions ported to use capabilities  Region of shared memory between pairs of compartments
e Effortlow in small compartments e Compartment data bounds (DDC) extended to overlap shared memory
* Tightly bounded data accesses  Data annotated by developer to relocate to shared data
* Trust model: sandbox  Coarse-grained data sharing
* Trust model: mutual distrust
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Evaluation On Morello Hardware

Libsodium benchmark used to evaluate Approach 1 (5 functions), SQLite benchmark used to evaluate Approach 2 (filesystem isolated) — All evaluation on bare metal

FlexOS on Morello Approach 1: Manual Capability Propagation

* FlexOS Unikernel ported to Morello e Performance overhead:

* Runsin hybrid mode e 0.1%-12.2% relative to
e 2200 LoC needed for port

 Execution bare metal on hardware + Engineering cost:

* Majority of existing work evaluated on * max 2 hours and 73 LoC changed (>50%)
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Approach 2: Overlapping Shared Memory
* Performance overhead:
* 119.9% relative to uncompartmentalised execution on
Morello

uncompartmentalised execution on Morello  Comparable to MPK & outperforms EPT

compartmentalisation in FlexOS on Intel x86-64
Outperforms Linux with SQLite benchmark and similar
isolation (filesystem)
* Engineering cost:

* max 2 days and <300 LoC changed in filesystem (~5%)
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Conclusions & Future Work

 Performance overhead of hybrid mode compartmentalisation in a single address space is comparable to other intra-address space mechanisms
* Engineering burden of mixing pointers and capabilities requires trade-offs to design to reduce it

* Pure capability compartments within a Unikernel environment will be explored in the future
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