
FlexCap: Software Compartmentalisation Trade-Offs with 
Hardware Capabilities

Motivation & Background

System Design

Challenges – Data Sharing

Evaluation On Morello Hardware

Conclusions & Future Work

John Alistair Kressel, Hugo Lefeuvre, Pierre Olivier – The University of Manchester

• CHERI brings hardware capabilities to RISC ISAs
• CHERI hardware capabilities add bounds and permissions information to pointers
• CHERI can be used in hybrid execution mode – both pointers and capabilities used
• Hybrid mode enables existing software to be used without major porting
• How easy is it to apply to compartmentalisation (the isolation of code and data) in hybrid mode to a single address 

space scenario such as applications?
Problem Statement:

• Prototype implemented using compartmentalisation-aware unikernel – FlexOS
• All components in single address space
• Unikernels have no memory isolation for performance – FlexOS uses 

compartmentalisation to restore security
• Compartments defined statically by developer
• Compartments defined by PCC and DDC – global architectural capabilities

• Function call ‘gates’ initiate compartment switches (Caller)
• Privileged switcher switches compartment capabilities and stacks 
• Trampoline is entry point to callee and performs capability return to caller

Mixing pointers and capabilities is an engineering burden – two approaches proposed to reduce effort
Approach 1: Manual Capability Propagation Approach 2: Overlapping Shared Memory

Comp 0 Shared Data Comp 1

Comp 0 DDC Comp 1 DDC

Virtual address space

• Functions ported to use capabilities
• Effort low in small compartments
• Tightly bounded data accesses
• Trust model: sandbox

• Region of shared memory between pairs of compartments
• Compartment data bounds (DDC) extended to overlap shared memory
• Data annotated by developer to relocate to shared data
• Coarse-grained data sharing
• Trust model: mutual distrust

Libsodium benchmark used to evaluate Approach 1 (5 functions), SQLite benchmark used to evaluate Approach 2 (filesystem isolated) – All evaluation on bare metal

Approach 1: Manual Capability Propagation Approach 2: Overlapping Shared Memory

• Performance overhead: 
• 0.1%-12.2% relative to 

uncompartmentalised execution on Morello
• Engineering cost: 
• max 2 hours and 73 LoC changed (>50%)

• Performance overhead: 
• 119.9% relative to uncompartmentalised execution on 

Morello
• Comparable to MPK & outperforms EPT 

compartmentalisation in FlexOS on Intel x86-64
• Outperforms Linux with SQLite benchmark and similar 

isolation (filesystem)
• Engineering cost: 
• max 2 days and <300 LoC changed in filesystem (~5%)

• Performance overhead of hybrid mode compartmentalisation in a single address space is comparable to other intra-address space mechanisms
• Engineering burden of mixing pointers and capabilities requires trade-offs to design to reduce it
• Pure capability compartments within a Unikernel environment will be explored in the future
John Alistair Kressel, Hugo Lefeuvre, and Pierre Olivier. 2023. Software Compartmentalization Trade-Offs with Hardware Capabilities. In Proceedings of the 12th Workshop on Programming 
Languages and Operating Systems (PLOS ‘23)

Project Website: https://olivierpierre.github.io/project-flexcap/

Exploration of intra-address space, hybrid mode compartmentalisation is lacking - we explore the possible 
compartment models and their performance and engineering costs as well as security and scalability

FlexOS on Morello
• FlexOS Unikernel ported to Morello
• Runs in hybrid mode
• 2200 LoC needed for port

• Execution bare metal on hardware
• Majority of existing work evaluated on 

FPGAs or softcores


